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A model for the heavy-fermion behaviour of YMn2: influence 
of frustration on the spin fluctuation spectrum 

C Pinettest and C Lacroix 
Labomtoire de Magnetisme Louis Ndel, CNRS, BP 166. 38042 Crenoble Cddur 9, France 

Received 31 May 1994 

Abstract. We show that the magnetic properties of frustrated itinerant systems m be described 
by a peculiar shape of the y-dependent susceptibility. We justify the fact that the spin fluctuation 
SpeCtI'Um is especially broad in this case. This spectrum is used to calculate the spin fluctuation 
contribution to the specific heat: we show that this contribution can be very large close to 
a magneti+non-magnetic instability. Comparison with recent experimental results on YMn2 
is made and the similarities of this compound with the 4f heavy-fermion compounds are 
emphasized. 

1. Introduction 

Frustration is present in many magnetic systems and it can lead to several original behaviours 
(for a review see [I]): incommensurate magnetic structures, absence of long-range ordering, 
order by disorder, spin liquid states, etc. Frustration can be due either to the existence of 
competing interactions as in the ANN1 model or to the crystallographic structure itself as in 
the triangular, Kagomt or pyrochlore lattices. 

In metallic magnetic systems we have shown recently that new ground states can be 
stabilized in strongly frustrated crystallographic structures, when the itinerant electrons are 
close to the magnetic-non-magnetic instability [2]. Typical examples of frustrated itinerant 
systems are the RMnz Laves phase compounds in which the Mn sublattice presents several 
kinds of ordering, depending on the Mn-Mn distance [3]; with a heavy rare earth, Mn is 
non-magnetic (or has a small moment induced by the R-Mn interactions) whereas, with a 
light rare earth, complicated antiferromagnetic structures are obtained; with R Dy or Th, 
both magnetic and non-magnetic Mn sites are present in the ordered state. We have shown 
that these new magnetic structures are stabilized in frustrated lattices because it is the best 
way of reducing frustration close to a magnetic-nonmagnetic instability [2]. 

More recently the paramagnetic phase of RMnz has also been found to exhibit 
peculiar behaviours. The most striking compound is YMn2 which has a complicated 
antiferromagnetic structure, but magnetic order is rapidly suppressed under hydrostatic [4] 
or chemical pressure induced by a small substitution of Sc [5]. At the same time, strong 
spin fluctuations are observed and the electronic contribution to the specific heat becomes 
very large; y is of the order of 180 mJ K-2 mol-' in YMnz under pressure and reaches 
200 mJ K-' mol-' in Y(Sc)Mn2 [6];  these are the highest values measured in 3d systems. 
Large values of the resistivity coefficient A (where p = p o  + AT2)  are also observed [7] 
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and the ratio A/y’ is very close to the value found in 4f or 5f heavy-fermion compounds 
[SI: A / y Z  N fiQ cm ml-’ mol’. Thus YMn2 exhibits heavy-fermion-like behaviour, 
although it is a good example of a 3d itinerant antiferromagnet. The existence of strong spin 
fluctuations in Y(Sc)Mn2 has been interpreted by Shiga ef al [9] as a proof of the existence of 
a quantum spin liquid state in this compound, this quantum spin liquid state being stabilized 
through frustration. However, in this interpretation, only transverse spin fluctuations are 
considered and it is not easy to understand the effect of pressure on YMn2; if the absence 
of ordering in Y(Sc)MnZ is due only to the strong frustration in the Laves phase structure 
(which is similar to the pyrochlore structure), why should YMn2 become ordered at zero 
pressure? On the other hand, this explanation does not take into account the large-amplitude 
fluctuations of the Mn magnetic moments observed in magnetovolume measurements [3] 
and polarized-neutron experiments [lo]. In this paper we present a different point of view: 
the heavy-fermion behaviour of YMn2 results from the proximity of the magnetic-non- 
magnetic transition in this compound which induces large-amplitude spin fluctuations and 
from the effect of strong frustration on the spin fluctuation spectrum. 

In the next section we propose a modelization of the dynamical susceptibility x ( q ,  0) 
in order to take into account frustration effects. Then this susceptibility is used to calculate 
the contribution of spin fluctuations to the specific heat close to the magnetic-non-magnetic 
instability; we show that large values of y can be obtained close to the antiferromagnetic- 
paramagnetic instability. Finally we show that spin fluctuations strongly reduce the Ntel 
temperature. 
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2. Spin fluctuation spectrum in a strongly frustrated system 

A common property to all frustrated systems (ordered or disordered) is the existence of 
several degenerate or nearly degenerate states; for example in the case of the ANN1 model, 
this quasi-degeneracy gives rise to the devil’s staircase [Ill; in the case of the Heisenberg 
model for the KagomC lattice this degeneracy can be lifted by the fluctuations (‘order by 
disorder’) [12]. Spin-glass systems also have degenerate ground states. This degeneracy has 
a strong influence on the susceptibility both in localized (Heisenberg or XY models) and 
in itinerant models; in the Hartree-Fock approximation the ordering is determined by the 
Q-value which maximizes the susceptibility x ( q ,  0) and this &-value is usually unique (if 
the symmetries of the Brillouin zone are correctly taken into account). In itinerant systems, 
x ( q ,  U )  is related to the non-interacting band susceptibility and, in the RPA, one has 

where 

However it was pointed out 1131 that close to the magnetic-non-magnetic instability, it 
is necessary to include vertex corrections which can be of the same order of magnitude as 
the RPA contribution. Then equation (1) should be replaced by 
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Close to the instability the vertex corrections become one half of the RPA term. Thus it 
is equivalent to introducing a factor 

The spin fluctuation spectrum in a paramagnetic system is completely determined by 
the dynamical susceptibility x(q, w) and, as can be seen from equation (2). it depends only 
on the band structure 6k. Usually one needs only to expand x(q, w) (or x0(p, w)) around 
its maximum; in ferromagnetic (or nearly ferromagnetic) systems, one takes the standard 
form [14] 

in front of the RPA expression (equation (1)). 

Xo(q, w) = xo[l - nq' - b(w/q)' f icw/q] with q << 1, w << 1 (3) 

where the coefficients xo = xo(O,O),  a,  b and c depend on the band structure 6k. In 
antiferromagnetic or nearly antiferromagnetic systems the expansion is slightly different 
[14]; if xo(q, w) is maximum at q = Q, the expansion around Q can~be  written 

xo(Q + q. w) = XQ(I - aq2 - bw' + icw) with q << Q, w < 1 (4) 

where XQ = x o ( Q ,  0), a ,  b a n d ~ c  depend on the band structure. 

several nearly degenerate states. Two cases can be considered. 

(i) Discrete degeneracy. The susceptibility has two degenerate (or nearly degenerate) 
maxima at QI and Qz; this situation has been studied by Moriya and Usami [I51 for the 
special case Q1 = 0 (coexistence of ferromagnetism and antiferromagnetism). This form of 
xo(q. w) can lead to complex ordered states but we have verified that in the paramagnetic 
phase the spin fluctuation contribution is not much enhanced; thus this case will not be 
discussed further. 

(ii) Continuous degeneracy. The susceptibility has a broad maximum around q = Q. 
This can be described by introducing q4 term in the expansion; equation (4) is then replaced 

In the frustrated case the susceptibility xo(p, w) will be affected by the existence of 

by 

(5 )  0 X (Q + q, 0) = xQ(1 - aq2 - arq4 -bo' + icw), 

and, for the case of continuous degeneracy, one has a <<a'. 

with q << Q, w << 1 

In the case of localized models, frustration can also induce a quasi-degeneracy associated 
with a broad maximum in the spin fluctuation spectrum; as already mentioned in the 
introduction, the classical Heisenberg model does not become ordered for the KagomB 
and pyrochlore lattices and this is associated in the Hartree-Fock approximation with the 
existence of flat modes (independent of q) in the spin-wave spectrum [16,17], at least in 
some directions of reciprocal space. It has been shown further that, if the calculation is 
made beyond the harmonic approximation, the spin-wave excitations on the KagomB lattice 
have a quadratic q-dependence [IS]. Similarly, for the frustrated square lattice, the spin- 
wave spectrum of the Heisenberg model has to be expanded up to fourth order in q because 
the second-order term vanishes in the strongly frustrated case [ 191. 

Recent inelastic neutron experiments on Y(Sc)Mnz also suggest a peculiar behaviour of 
the spin fluctuation spectrum in this compound [ZO]; a flat maximum around Q = 1.5 A-' 
has been observed. However, the experimental results also indicate that the susceptibility 
x (Q + q, w) is strongly anisotropic; it is dispersionless only along particular symmetry 
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directions. Consequently we have considered two other possible expansions of x0(Q+q, U),  
besides equation (5):  

xo(Q+n,o)  = x ~ [ l  -aal(q~+q:)-~a:qL4-bo2+icol (6) 

C Pineties and C Lucruix 

and 

x0(Q + q, W )  = X Q I I  - azq; - d(q: +q;) - bo2 + icol. (7) 

Equation (6) describes a spin fluctuation spectrum elongated only along the z direction, 
while equation (7) describes a spectrum which is almost flat in the x-y plane. Experimental 
results indicate that Y(Sc)Mnz is better described by equation (6) than by equation (5) [ZO] 
with Q = (5z/2,5a/2,0)  and the spectrum is very broad along the [OOI] axis. 

3. Specific heat for nearly magnetic frustrated compounds 

On the assumption of one of the equations (equation (5), (6) or (7)) for xo(Q + q. w )  it 
is easy to calculate the contribution of the spin fluctuations to the free energy [I41 in the 
paramagnetic phase: 

where x(q,  o) is given by equation (2)  (or ( I )  in the RPA). In the following it will be assumed 
that the system is paramagnetic at T = 0 K, but very near to the anitferro-paramagnetic 
instability, i.e. U x g  is close to 1. We define eQ = U x p .  Then the contribution of spin 
fluctuations to the specific heat can easily be obtained from equation (8) by derivation. This 
contribution can be expanded at low temperatures as C, = y T  + gT' (or T 3  In T in nearly 
ferromagnetic systems). 

In the non-frustrated case a completely different behaviour is obtained for the nearly 
ferromagnetic and antiferromagnetic~cases corresponding to equations (3) and (4) [14]. 

(i) For the nearly femomagnetic case the paramagnon contribution gives a logarithmic 
contribution to the coefficient y .  which diverges at the paramagnetic-ferromagnetic 
transition 1211; including the vertex corrections, y is given by 

where qc is determined by the volume of the unit cell: qc = ( 6 ~ ~ ) ' / ~ .  
(ii) For the nearly antiferromagnetic case, y remains finite at the paramagnetic- 

antiferromagnetic instability [22] and one obtains 

Equation (IO) indicates that y is limited by the ratio c/a, which depends only on the 
characteristics of the band. On the other hand, we show in the following that y can be 
divergent in the nearly antiferromagnetic case if xo(Q + q, U )  takes one of the forms given 
by equation (3, (6) or U), as expected in presence of frusbation. 
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3.1. Isotropic flustrated c u e  

In the extreme case where the spin fluctuation spectrum is completely independent of 
4 ( a  =a’ = 0) ,  equation (8) gives the following expression for y close to the instability: 

W Q  y SZ Jrc-. 
1 - W Q  

Thus, in that case, y diverges at the antiferromagnetic-paramagnetic transition. Such a 
q-independent spectrum describes localized fluctuations. In fact in frustrated systems the 
flat maximum of xo(Q+q, w )  can also be interpreted as due to quasi-localized fluctuations; 
for example in the Kagomi lattice, it has been shown that spin fluctuations with vanishing 
excitation energy are localized on the hexagons [l], and these localized excitations are at 
the origin of most of the peculiar properties of this lattice. 

If now we consider a strongly frustrated system with an isotropic susceptibility 
(equation (5) with a << a’), the coefficient y can be calculated using~equation (8) and 
we give below the expressions for the most divergent contributions. 

(i) Close to the instability, i.e. when 1 - uQ <( a ,  we obtain 

a 

In this case, y remains finite at the antiferromagnetic-paramagnetic transition, but it 

(ii) In an almost fully frustrated system (a  << 1 - W Q ) ,  

can become very large if the system is strongly frustrated (i.e. if a <<a‘). 

1 U - y%L( 1 

a‘314 (1 - U Q ) ’ / 4  a( 1 - W Q ) Y 4  

In the peculiar case of fully frustrated system (a  = 0), y diverges at the instability as 
(figure 1): y cx 1/(1 - U Q ) ’ l 4 .  

3.2. Anisotropic frustrated cases 

In the anisotropic frustrated case, which is ‘less’ frustrated than the isotropic case because the 
spin fluctuation spectrum is flat only along some directions of the reciprocal space, y does 
not always diverge close to the paramagnetic-antiferromagnetic instability. Calculations in 
that case have been performed numerically for values of the susceptibility coefficients of 
the order of those of the simplecubic lattice (see appendix). 

If the spin fluctuation spectrum is flat in the n-y plane (equation (7)), y diverges close 
to the instability, but less strongly than in the isotropic case (equations (1 I), (12) and (13)). 
From figures 2 and 3, one can deduce that 

(14) 

On the other hand, if the spin fluctuation spectrum is elongated only along the z direction 
(equation (6)), as is the case in YMn2, y remains finite close to the instability (figure 4). 
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----------- -----__ 
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-10 -9 - 8  -1 - 6  - 5  - 4  

ln(1- a) 
Figure 1. lny a a function of In(1 -U) close 10 the instability for a frustrated system with 
isotropic degeneracy (equation (5) for (1 = 0 and CL' = 42.5 A4) (. . . . . .) and with anisotropic 
degeneracy (equation (6) (- . -) and equation (7) (- - -) for (11 = a2 = 170 A* and 
ui = (1; = 42.5 A4) and for a nearly antiferromagnetic system (equation (4) with (1 = 170 A') 
(-). See the appendix for the ofher panmeters. 
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Figure 2. Coefhciicient y 3s d funclion of In(1 - U )  close to the insrability. The symbols have 
the same meanings 3s in figure 1. 

Nevertheless, if frustration increases, i.e. if the fourth-order coefficient a' decreases, y can 
become rather large since for ap  = 1; it varies as (see figure 3) 
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3.3. Comparisoizs of y for the different spinfluctuation spectra 

Calculations of y have been performed for different values of the susceptibility coefficients 
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a and a’ (or a ] ,  az, a; and a;); results are shown in figures 1-4; the parameters have been 
estimated for a free-electron band on a cubic lattice, as explained in the appendix. 

In figure 4, it appears that. in the anisotropic frustrated case, y is larger than in the 
non-frustrated case close to the instability, but smaller than in the isotropic frustrated one; 
frustration strongly affects the coefficient y close to the instability. 

In the case of the anisotropic spectrum elongated along the z direction, which, among 
the different models considered in this work, gives a better description of YMnz, y is 
approximately twice that for the nearly antiferromagnetic case at the instability; our results 
explain qualitatively the experimental results in [4] where it was found that the values of y 
in the paramagnetic phase of YMnz are one order of magnitude larger than in ordinary 3d 
metals. We show in section 3.5 that better agreement is found if the parameters a and a’ 
are taken from the experimental results. 

3.4. Calculation of the T3 term 

We have also calculated the T3 contribution of the spin fluctuations to the specific heat 
using equation (8). Note that the phonon contribution is not taken into account here. 

It appears that in all cases, with or without frustration, p diverges and becomes negative 
at the magnetic-non-magnetic instability. The coefficient p can be calculated and we 
find that: (i) p a - l / ( l  - CYQ) i n  the nearly antiferromagnetic case (non-frustrated) 
(equation (4)); (ii) p cx -l/(l - CYQ)’ in the strongly frustrated case with an isotropic 
susceptibility (equation (5)  with a = 0); (iii) p cx -l/(l - C Y Q ) ~  in the extreme case of a 
q-independent spectrum. 

Negative values of j3 have never been observed in nearly antiferromagnetic 3d systems. 
Nevertheless, in connection with large values of y ,  negative values of ,5 are observed in 
many heavy-fermion compounds (e.g. CeCus [23]) and more recently in Y(Sc)Mnz 161; 
these are, to our knowledge, the only metallic systems with negative p .  

Our values of p very close to the instability are much larger than those measured 
for Y(Sc)Mn2 [6] .  However, better agreement with experiments can be found if the 
parameters are chosen in such a way that the system is not too close to the instability; 
for example, for 1 - aQ 2: IO-’ we obtain (see appendix for the other parameters) 
p = -3.04 mJ K4 mol-’ for an antiferromagnetic system (equation (4) with a = 170 A’), 
p = -0.1 mJ K-4 mol-’ for a frustrated system with isotropic degeneracy (equation (5) 
with a = 0 and a’ = 42.50 A4), p = -0.5 mJ K-4 mol-’ for a frustrated system 
with anisotropic degeneracy (equation (6) with a,  = 170 A’ and a{ = 42.50 A4) and 
p = -4.15 mJ K-4 mol-’ for a frustrated system with anisotropic degeneracy (equation (7) 
with a2 = 170 A’ and a; = 42.50 A4). 

In fact, YMnz under pressure never reaches CYQ = 1 because in this compound the 
transition between the paramagnetic and antiferromagnetic states is always first order and 
accompanied by a volume change which implies a discontinuous variation in CYQ at the 
transition. 

In the next section we show that good agreement with the value measured is obtained 
if a and a‘ are taken from the neutron experiment. 

3.5. Estimation of y and p for Y(Sc)Mnz 

The numerical results in the preceding sections have been obtained using a one-band model 
in a cubic lattice. One can obtain a better estimation of the susceptibility coefficients a 
and a’ directly from the spin fluctuation spectrum obtained by inelastic neutron experiments 

C Pinettes and C Lacroix 
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1201 on Y(Sc)Mn*: Q I  N 11.1 A*; a; Y 39.1 A4; c N 0.12 meV-' in equation (6). For 
these values, we obtain 

y Y 195 mJ K-' mol-' 

and 

1 - a Q  lo-* 
I -me E ' 

for [ 0.025 mJ K4 mol-' 
B E ( -  

-2.40 mJ K-4 mol-' 

These values are close to those measured on the same sample [6 ] :  y Y 

200 mJ K-' mol-' and ,5 Y -1.9 mJ K-4 mol-'. However, in order to compare 
with the experimental value of ,G, the phonon contribution has to be estimated from a 
similar compound; in YCoz for example, this contribution is about 0.3 mJ K-4 mol-' [MI. 
Thus the spin fluctuation contribution to the T7 term in Y(Sc)Mnz can be evaluated to be 
f i  -2.2 mJ K-4 mol-'. 

Owing to the large number of unknown parameters in the calculation, the very good 
agreement between experimental and numerical results can be considered as fortuitous. 
Nevertheless, it shows that Y(Sc)MnZ is well described by our model of quasi-degenerate 
spin fluctuations. 

4. Spin fluctuations in the ordered state 

The spin fluctuations also influence strongly the properties of the ordered state, especially 
if the Stoner factor cyg = U x n  is close to 1 .  We discuss in this section the effect of spin 
fluctuations on the staggered magnetization at T = 0 K (zero-point spin fluctuations) and 
on the ordering temperature. 

Close to the instability, the spin fluctuations reduce the staggered magnetization M ( T ) .  
It has been shown by Moriya [I41 that the magnetization at temperature T can be calculated 
as follows: 

where AF is the contribution of the spin fluctuations to the free energy (equation (8)) and 
g i s  the mode-mode coupling coefficient which can be calculated used the Hartree-Fock 
free-energy development close to the instability: 

The correction AF due to the transverse spin fluctuations is determined from 
equation (8) where the RPA susceptibility (equation (1)) is calculated in theordered phase. 
The band susceptibility xo(q .  w )  now depends on the staggered magnetization M ( T )  and, as 
we are close to instability, M is small and it is justified to use the development of x i ( q ,  w )  
for small M: 
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where D and F depend on the band structure. 
The correction to M z ( T )  (equation (16)) contains a constant term (zero-point 

fluctuations) and a temperaturedependent term which we have determined numerically. 
At low tcmperatures (T < 1 K), it varies as 1141 
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(19) 

where K ,  and KZ are positive and depend on the band structure. 

of U greater than 1: U, = 1 + ( x Q / ~ ) K I .  The transition temperature TN is given by 
Equation (16) indicates that the transition at T = 0 K then occurs for a critical value 

TN = J”* K Q K 2  - Uc) 

We have calculated KI and Kz in the isotropic frustrated case (equation (5) with a = 0) 
and in the non-frustrated case (equation (4)), for values of the susceptibility coefficients of 
the order of those of the simple-cubic Iattice (see appendix). At T = 0 K, the corrections 
are very small; we find that ( x ~ / 2 ) K 1  N Thus, the zero-point fluctuations do not 
modify the critical value of U: as 2: 1. From equation (16) it can also be shown that the 
staggered magnetization at T = 0 K is reduced by the fluctuations only if the system is 
close to the instability, i.e. when U - 1 is of the order of 

On the other hand, the temperaturedependent term is strongly affected by the 
susceptibility shape close to the instability. In particular, KZ is one order of magnitude 
larger in strongly frustrated systems (equation (5)) than in non-frustrated antiferromagnetic 
systems: Kz = 7.7 x eV K-2 i n the nearly antiferromagnetic case’(equation (4) with 
a = 170 A2) and KZ = 57.3 x eV K-’ in the strongly frustrated case with an isotropic 
susceptibility (equation (5) with a = 0 and a’ = 4250 A4). See the appendix for the other 
parameters. 

In the intermediate cases of anisotropic susceptibility, we can expect values for KZ 
between these two values. Thus we can conclude that frustration reduces the ordering 
temperature by a factor which is approximately proportional to K;”. 

5. Conclusions 

We have shown in this paper that, even in itinerant systems, frustration strongly modifies 
the spin fluctuation spectrum. Consequences for the specific heat coefficients have been 
studied and this allows comparison between YMnz and the 4f heavy-fermion compounds; 
these systems are very often close to a magnetic-non-magnetic instability owing to the 
competition between the Kondo effect and magnetic interactions. Calculation of the spin 
fluctuation resistivity would also be interesting since, as mentioned in the introduction, 
YMnz obeys the Kadowaki-Woods 181 relation for the ratio A / y 2 .  We can suggest that this 
relation is associated with the existence of quasi-localized spin fluctuations since it has been 
shown that this relation is verified if the spectrum is q independent [U]. In heavy-fermion 
compounds these localized fluctuations are attributed to the Kondo effect, while in our case 
they are a consequence of the frustration in the Laves phase structure. 
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Appendix 

Except in section 3.5, the numerical calculations have been performed using values,of the 
various coeificients of the order of those of the simple-cubic lattice as given by Hasegawa 
and Moriya [26] for the free-electron model with Umklapp processes. 

In these calculations, the energy unit is taken as h2/8mai where a0 is the lattice 
parameter. The effective mass m can be estimated for free electrons in a band of width 2W. 
The relation between m and W is then m N h 2 ( 4 a ) z l ' / a ~ W .  We have 'taken a0 = 5 .& and 
W = 5 eV, i.e. of the order of the values for transition metals. 

The susceptibility coefficients a ,  a', b, c and F (s& equations (5), (6), (7) and (IS)) 
are given in [26] in units of [ x ~ ( k p  = 1)/2]-' where kF is the Fermi vector. An order of 
magnitude for X Q ( ~ F  = 1) can also be estimated from xp(kF = I )  N n(EF) Y 2/aW. 

We have considered several values for these coefficients in the calculation of y ,  p and 
magnetization M ( T )  close to the instability. First, we have checked that variations in the 
b, c,  F and XQ parameters are not preponderant; we have thus limited our calculations to 

b = 0.011 meV-' c = 1.23 meV-' F = 136 X Q  = 0.24 eV-' 

On the other hand, the values of a and a' play a determining role in these calculations, 
as expected; a is of the order of 170 2 in [%I. 

We also need a cut-off wavevector qc and a cut-off energy w,. Following Hasegawa and 
Moriya we have taken qc = 1 in units of x/ao. Finally wc has been estimated as the width 
of Im[xo(q, w ) ]  for an isotropic susceptibility (equation (5)), i.e. wc (aq: + a'q;)/c. 
These parameters do not influence strongly our numerical results; we have thus limited our 
calculations to 

qc = 0.63 A-] w, = 0.44 eV 
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